Beta Distribution Calculator
Adjust α (alpha) and β (beta) shape parameters to examine mean, variance, skewness, and density values of the Beta(α, β) distribution.
Summary Statistics
Mean: 0.2857
Variance: 0.025510
Std. Deviation: 0.1597
Skewness: 0.5963
Excess Kurtosis: -0.1200
Use the table below to inspect Beta(α, β) density values across the interval [0, 1]. The density scales up to 2.458 at its peak with current parameters.
| x | f(x) |
|---|---|
| 0.00 | 0.0000 |
| 0.01 | 0.2882 |
| 0.02 | 0.5534 |
| 0.03 | 0.7968 |
| 0.04 | 1.0192 |
| 0.05 | 1.2218 |
| 0.06 | 1.4053 |
| 0.07 | 1.5709 |
| 0.08 | 1.7193 |
| 0.09 | 1.8515 |
| 0.10 | 1.9683 |
| 0.11 | 2.0705 |
| 0.12 | 2.1589 |
| 0.13 | 2.2343 |
| 0.14 | 2.2974 |
| 0.15 | 2.3490 |
| 0.16 | 2.3898 |
| 0.17 | 2.4204 |
| 0.18 | 2.4415 |
| 0.19 | 2.4537 |
| 0.20 | 2.4576 |
| 0.21 | 2.4539 |
| 0.22 | 2.4430 |
| 0.23 | 2.4256 |
| 0.24 | 2.4021 |
| 0.25 | 2.3730 |
| 0.26 | 2.3390 |
| 0.27 | 2.3003 |
| 0.28 | 2.2574 |
| 0.29 | 2.2108 |
| 0.30 | 2.1609 |
| 0.31 | 2.1080 |
| 0.32 | 2.0526 |
| 0.33 | 1.9950 |
| 0.34 | 1.9354 |
| 0.35 | 1.8743 |
| 0.36 | 1.8119 |
| 0.37 | 1.7486 |
| 0.38 | 1.6845 |
| 0.39 | 1.6200 |
| 0.40 | 1.5552 |
| 0.41 | 1.4904 |
| 0.42 | 1.4259 |
| 0.43 | 1.3617 |
| 0.44 | 1.2982 |
| 0.45 | 1.2353 |
| 0.46 | 1.1734 |
| 0.47 | 1.1126 |
| 0.48 | 1.0529 |
| 0.49 | 0.9945 |
| 0.50 | 0.9375 |
| 0.51 | 0.8820 |
| 0.52 | 0.8281 |
| 0.53 | 0.7759 |
| 0.54 | 0.7253 |
| 0.55 | 0.6766 |
| 0.56 | 0.6297 |
| 0.57 | 0.5846 |
| 0.58 | 0.5414 |
| 0.59 | 0.5002 |
| 0.60 | 0.4608 |
| 0.61 | 0.4234 |
| 0.62 | 0.3878 |
| 0.63 | 0.3542 |
| 0.64 | 0.3225 |
| 0.65 | 0.2926 |
| 0.66 | 0.2646 |
| 0.67 | 0.2384 |
| 0.68 | 0.2139 |
| 0.69 | 0.1912 |
| 0.70 | 0.1701 |
| 0.71 | 0.1507 |
| 0.72 | 0.1328 |
| 0.73 | 0.1164 |
| 0.74 | 0.1014 |
| 0.75 | 0.0879 |
| 0.76 | 0.0756 |
| 0.77 | 0.0646 |
| 0.78 | 0.0548 |
| 0.79 | 0.0461 |
| 0.80 | 0.0384 |
| 0.81 | 0.0317 |
| 0.82 | 0.0258 |
| 0.83 | 0.0208 |
| 0.84 | 0.0165 |
| 0.85 | 0.0129 |
| 0.86 | 0.0099 |
| 0.87 | 0.0075 |
| 0.88 | 0.0055 |
| 0.89 | 0.0039 |
| 0.90 | 0.0027 |
| 0.91 | 0.0018 |
| 0.92 | 0.0011 |
| 0.93 | 0.0007 |
| 0.94 | 0.0004 |
| 0.95 | 0.0002 |
| 0.96 | 0.0001 |
| 0.97 | 0.0000 |
| 0.98 | 0.0000 |
| 0.99 | 0.0000 |
| 1.00 | 0.0000 |
How to Use This Calculator
- Provide positive shape parameters α and β to define the Beta(α, β) distribution.
- Review summary statistics to understand central tendency and spread.
- Use the density table to evaluate likelihood at specific x values between 0 and 1.
- Experiment with different shape parameters to visualize uniform, U-shaped, or skewed beta distributions.
Formula
f(x; α, β) = (Γ(α + β) / (Γ(α) Γ(β))) xα − 1 (1 − x)β − 1
Mean = α / (α + β)
Variance = (αβ) / ((α + β)2 (α + β + 1))
The beta distribution is defined on [0, 1] and acts as a conjugate prior for Bernoulli/binomial likelihoods, making it invaluable for Bayesian modeling.
Frequently Asked Questions
What happens if α = β?
The distribution is symmetric around 0.5. When α = β = 1, it reduces to the uniform distribution on [0, 1].
Can α or β be less than 1?
Yes. Parameters between 0 and 1 create U-shaped distributions, assigning more mass near 0 and 1 with thin middles.
How does this relate to binomial data?
Beta distributions are conjugate priors for binomial proportions. Update α and β with observed successes and failures to obtain posterior distributions.
Where is the mode?
Mode = (α − 1) / (α + β − 2) for α, β > 1. The calculator focuses on mean and variance, but you can compute the mode separately if needed.